

AVALIAÇÃO DO POTENCIAL DE FERMENTAÇÃO DOS PROBIÓTICOS *BIFIDOBACTERIUM LACTI*S HN019 E *SACHAROMYCES BOULARDII* 17 PARA PRODUÇÃO DE BEBIDAS À BASE DE MEL

Adryan E. SANTANA^{1*}, Giselle N. COSTA¹, Wilma A. SPINOSA¹.

adryan.eraldo.santana@uel.br*, wilma.spinosa@uel.br

¹Universidade Estadual de Londrina

Resumo

O mel de *Apis mellifera* é apreciado mundialmente e muito utilizado pelas indústrias de alimentos, fármacos e cosmética, devido às propriedades sensoriais e terapêuticas. Concomitantemente, alimentos funcionais fermentados por probióticos são destaque no mercado. Assim, a fermentação probiótica do mel pode resultar em bebidas com características sensoriais e funcionais únicas. Este estudo avaliou a fermentação de bebidas formuladas com diferentes concentrações de mel (10, 15 e 20 % (p/V)), utilizando *Bifidobacterium lactis* HN019 e *Saccharomyces boulardii* 17. As fermentações foram monitoradas por medidas de pH, acidez titulável e contagem dos microrganismos. As formulações com 15 ou 20% de mel apresentaram pH inicial de 4.07, acidez titulável de 0,03% (ácido acético) e, viabilidade dos probióticos de 6, 5 e 7, 1 log de UFC/ml para a levedura e bifidobacteria respectivamente. Ao final de 96 h de fermentação observou-se em média pH 3, acidez de 0,2% com 6, 2 e 8, 2 log de UFC/ml.

Palavras-chave: Probiótico, Fermentação, Alimento funcional, Bebida.

Introdução

O mel de *Apis mellifera* é um ingrediente nacional sem legislação própria para a sua comercialização. Este mel, além de expressivas características sensoriais e potencial gastronômico considerável, tem sido também relacionado a propriedades terapêuticas. Pesquisas que possam ampliar a elucidação da maturação de mel de *Apis* e o seu potencial uso e aplicação no desenvolvimento de novos produtos, bem como a geração de renda aos produtores e para comunidades de pequenos agricultores, são fundamentais para o desenvolvimento desta cadeia produtiva. O mel é um produto muito procurado pelos consumidores, principalmente pelo fator sensorial bastante agradável e pelos efeitos terapêuticos que lhe são atribuídos (PEREIRA, 2008).

Neste mesmo sentido, a produção de alimentos que valorizem a prevenção da saúde com foco na qualidade de vida, tem impulsionado o mercado de alimentos funcionais (MARKET RESEARCH REPORT, 2018), e neste nicho de mercado, os probióticos são os maiores responsáveis pela consolidação do consumo destes produtos que é fortemente embasado em estudos e comprovações clínicas de funcionalidade tanto em humanos como em animais. Dentre os probióticos utilizados na produção de alimentos os gêneros *Bifidobacterium* e *Saccharomyces* têm sido utilizados e oferecem potenciais efeitos benéficos à saúde do consumidor (PRASAD et al,

I Seminário de Gestão Integrada em Qualidade - 1 e 2 de agosto de 2024, UEL - Paraná

Análise de Alimentos

1999; VANDENPLAS et al, 2009; BERNINI et al., 2016).

Assim, o desenvolvimento de fermentados de mel de *Apis* apresenta potencial relevante para indústria de alimentos e para o apicultor ao impulsionar o desenvolvimento de um novo produto que pode gerar renda e emprego pelo desenvolvimento de uma bebida com potencial funcional, a partir do mel de abelha contendo probióticos. A caracterização de bebidas com potencial funcional de melhorar a saúde além de conter características sensoriais agradáveis ao consumidor como é o caso das bebidas ácidas carbonatadas pode diversificar e agregar valor ao mel.

Espera-se que as bebidas contendo diferentes proporções de mel como fonte de açúcar para fermentação por microrganismos probióticos, proporcione bebidas com características diferentes entre si, adicionalmente, espera-se que os produtos que apresentem bons parâmetros de fermentação possam ser utilizados como produto base para acrescentar aromas e sabores naturais, como diferentes frutas brasileiras visando valorizar ainda mais o produto.

Material e Métodos

Foi utilizado mel da espécie obtido de um único produtor da região de Londrina, PR. Com utilização das linhagens comerciais Bífido HOWARU - Bifidobacterium animalis var lactis HN019 e FLORATIL - Saccharomyces cerevisiae var. boulardii 17, ambas liofilizadas, armazenada a -18°C até o o uso.

Foram produzidas três bebidas base com 10, 15 e 20% (P/V) de mel. As diferentes proporções do mel foram adicionadas à água previamente esterilizada a 121°C/15min. Ambas as culturas foram adicionadas diretamente à estas bases na concentração 0,1% (P/V) e incubado a 37°C, cuja fermentação foi monitorada com medidas de pH, acidez titulável (% ácido acético) conforme determina as metodologias propostas pelo Instituto Adolfo Lutz (IAL, 2008) e a contagem de microrganismos usando ágar De Man Rogosa & Sharp (MRS ágar) com 0.05% de cisteína, incubado a 37°C/48h em anaerobiose para contagem de bifidobacterium (Van Castreele et al,.) e ágar batata dextrose para contagem da levedura (25°C/24h).

Resultado e Discussões

Devido ao tempo de fermentação e características do fermentado, as bebidas que apresentaram melhores parâmetros foram produzidas nas concentrações de 15 e 20% (P/V) de mel. As análises de pH e acidez titulável evidenciaram redução do pH e aumento da acidez titulável. A formulação com 10% de mel apresentou pouca variação no pH, acidez e carbonatação, portanto, não será continuada.

No que diz respeito à concentração das das espécies probióticas, foi observado um longo tempo de fermentação, com manutenção da contagem microbiana, porém com atividade metabólica,

uma vez que houve acidificação do meio e produção de CO₂ observado pela carbonatação. o pH inicial foi de 4.07, acidez titulável de 0,03% (ácido acético) e, viabilidade dos probióticos de 6, 5 e 7, 1 log de UFC/ml para a levedura e bifidobacteria respectivamente. Nas primeiras 48 h de fermentação foi observado discreta modificação nos parâmetros fermentativos, o que pode ser atribuído à atividade antimicrobiana naturalmente apresentada por méis, portanto, necessidade de adaptação das 2 linhagens utilizadas. No entanto, ambas se mantiveram estáveis no meio; e, ao final de 96 horas de fermentação a viabilidade dos microrganismos foi mantida em log superiores à 6 para ambos probióticos. Observou-se um pH de 2.97 e viabilidade de 6,2 e 8,2 log de UFC/ml para a S. boulardii e B.lactis respectivamente, evidenciando que os probióticos, adaptaram-se ao meio, se mantiveram e produziram ácido orgânico, reduzindo assim o pH e promovendo carbonatação, o que ocasionou características desejadas às formulações.

Conclusões

O uso de B. lactis HN019 e S. boulardii 17 foi adequado para fermentação de mel nas concentrações de 15 e 20% e foram selecionadas para continuidade do projeto, visando a produção e caracterização físico química e microbiológica de bebidas probióticas acidificadas e carbonatadas com base de mel de abelha Apis mellifera. As bebidas produzidas poderão ser uma alternativa aos produtores de mel que podem produzir uma bebida potencialmente funcional.

Referências

BERNINI, L. J. et al. Beneficial effects of *Bifidobacterium lactis* on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. **Nutrition**, v. 32, n. 6, p. 716–719, 2016.

CASTEELE, S. VAN DE et al. Evaluation of culture media for selective enumeration of probiotic strains of lactobacilli and bifidobacteria in combination with yoghurt or cheese starters. **International Dairy Journal,** v. 16, p. 1470–1476, 2006.

GRANATO, D. et al. Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, v. 9, n. 5, p. 455-470, 2010

IAL - INSTITUTO ADOLF LUTZ. Normas analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos para Análise de Alimentos. 4 ed. São Paulo, 2008.

PEREIRA, Ana Paula. Caracterização de mel com vista à produção de hidromel. 2008. Tese de Doutorado. Instituto Politécnico de Bragança, Escola Superior Agrária, 2008.

PRASAD, J. et al. Selection and characterisation of *Lactobacillus* and *Bifidobacterium* strains for use as probiotics. **International Dairy Journal**, v. 8, n. 12, p. 993–1002, 1999.

TRANSPARENCY MARKET RESEARCH. Probiotic Market By Application (Food and Beverages, Dietary Supplements, Animal Feed) By End Users (Human Probiotics, Animal Probiotics) - Global Industry Analysis, Size, Share, Growth and Forecast 2014 - 2020. Disponível em: http://www.transparencymarketresearch.com/pressrelease/probiotics-market.htm

VANDENPLAS, Y. et al. Probiotics in infectious diarrhea: are they indicated? A review focusing on *Saccharomyces boulardii*. South African Journal of Child Health, v. 1, no. 3, p. 116-119, Oct. 2009.

AGRADECIMENTOS: À Fundação Araucária e pela concessão de bolsa Iniciação Tecnológica, à Universidade Estadual de Londrina, pelo incentivo e oportunidade.

